Preparation for the Final.

Below you can find a list of definitions, axioms (well, an axiom), theorems and (counter-)examples that you need to know for the Final. More precisely, for in-class part of the Final, you will be given several (tentatively, ten to twenty) items from this list to formulate. Note that it won't have to be word-by-word citation, but whatever you write will need to be (a) correct (as in not a false statement), (b) easily equivalent to the textbook/lectures version.

On in-class part of the Final, you will *not* be asked to provide any proofs.

Knowledge of proofs of statements on this list is required for the take-home part of the Final.

In t	he list below,
⊙ mar	ks definitions and an axiom;
\square mar	ks theorems and statements;
⊳ mar	ks (counter-)examples that you need to know off-hand.
Not	e that there may be corrections to this list until Tuesday, Dec 10.
\mathbf{Pre}	eliminaries.
\odot	Sets, set-theoretic operations, functions, inverse function, composition.
0	Injections, surjections, bijections.
•	Finite, infinite sets. Denumerable (countably infinite), countable, uncountable sets.
	Countability of \mathbb{Z} , \mathbb{Z}^2 , \mathbb{Z}^n , \mathbb{Q} .
	Cantor's Theorem. Uncountability of \mathbb{R} .
\mathbf{Pr}	operties of \mathbb{R} .
•	Arithmetic properties of \mathbb{R} (A1-A4, M1-M4, D). (You will be provided a reminder sheet with for this item, if it will be relevant on the Final.)
	Basic consequences of arithmetic properties of \mathbb{R} .
•	Order properties of \mathbb{R} : set of positive elements, defining order in terms of the set of positive elements. (You will be provided a reminder sheet with for this item, if it will be relevant on the Final.)
	Basic properties of order on \mathbb{R} . (You will be provided a reminder sheet with for this item, if it will be relevant on the Final.)
	Positivity of squares and other basic consequences of properties of order on \mathbb{R} .
	Triangle inequality.
0	Bounded, bounded above, bounded below subsets of \mathbb{R} .
0	Upper bound, lower bound of a subset of \mathbb{R} .
\odot	Least upper bound (= exact upper bound = supremum) of a subset of \mathbb{R} .
\odot	Greatest lower bound (= exact lower bound = infimum) of a subset of \mathbb{R} .
0	Completeness property of \mathbb{R} (= supremum property of \mathbb{R}).

	Archimedean property of \mathbb{R} .
	Nested intervals property.
	The density theorem.
Lim	its of Sequences.
\odot	Sequence of real numbers (= sequence in \mathbb{R}).
\odot	Limit of a sequence in \mathbb{R} , convergent/divergent sequence.
	Uniqueness of limit of a sequence.
\odot	Tail of a sequence.
\odot	Bounded sequence.
	Boundedness of a convergent sequence.
\triangleright	Bounded but divergent sequence.
	Arithmetic properties of limits of sequences (Theorem 3.2.3).
\triangleright	Divergent sequences A, B such that $A + B$ converges.
	Order properties of limits of sequences (Theorems 3.2.4, 3.2.5).
\triangleright	Sequence (a_n) with $a_n > 0$ for all $n \in \mathbb{N}$, but $\lim(a_n) = 0$.
	Squeeze theorem for sequences.
	Increasing, strictly increasing, decreasing, strictly decreasing, monotone sequence. $$
	Monotone convergence theorem.
\odot	Euler's number e .
	Square root as a limit of a sequence.
\odot	Subsequence of a sequence.
	Bolzano-Weierstrass theorem.
\odot	Cauchy sequence.
	Cauchy criterion.
\odot	Sequence that tends to $+\infty$, sequence that tends to $-\infty$, properly divergent sequence.
\odot	Sum of a series. Correspondence between infinite series and sequences.
	<i>n</i> -th term test.
Lim	its of Functions.
\odot	Cluster point of a subset of \mathbb{R} .
\odot	Limit of a function.
	Uniqueness of limit of a function.
	Sequential criterion for limit of a function.
\odot	Function bounded a neighborhood.
	Local boundedness of a function that has a limit.
\triangleright	Bounded function that does not have a limit at 0.

ш	Arithmetic properties of limits of functions (Theorem 4.2.4).
\triangleright	Functions f, g that don't have a limit at some point $c \in \mathbb{R}$, but $f + g$ does.
	Order properties of limits of functions (Theorem 4.2.6).
	Functions f, g such that for all x in their domain, $f > g$, but at some point c , $\lim_{x \to c} f = \lim_{x \to c} g$.
	Squeeze theorem for limits of functions.
	Local separation from zero (Theorem 4.2.9).
	Infinite limit of a function at infinity, infinite limit of a function at infinity.
\odot	One-sided limits.
Con	tinuous Functions.
\odot	Function, continuous at a point. Function, discontinuous at a point.
	Criterion for continuity in terms of neighborhoods (Theorem 5.1.2).
	Sequential criterion for continuity.
	Sequential criterion for discontinuity.
\odot	Function, continuous on a subset of \mathbb{R} .
\triangleright	Function, discontinuous everywhere (for example, Dirichlet's function).
	Function, continuous at irrational numbers and discontinuous at rational numbers (for example, Thomae's function).
	Arithmetic properties of continuous functions (Theorem 5.2.1).
\triangleright	Functions f, g discontinuous at 0 such that $f + g$ is continuous at 0.
	Composition of continuous functions (at a point and on a set).
	Boundedness Theorem.
\triangleright	Bounded but discontinuous (at least at one point) function.
\triangleright	Function continuous but unbounded on an open interval.
	Absolute (= global) maximum of a function on a set, point of absolute maximum. Absolute minimum of a function on a set, point of absolute minimum.
	Maximum–Minimum Theorem.
	Function f continuous on an open interval such that that f does not have maximum or minimum value.
	Location of roots theorem, Bolzano's intermediate value theorem.
	Preservation of closed intervals. Preservation of intervals.
\odot	Function, uniformly continuous on a subset of \mathbb{R} .
	Nonuniform continuity criterion.
	Uniform continuity theorem.
\triangleright	Function, continuous but not uniformly continuous on an open interval.

functions.
⊙ Jump of a monotone function.
\Box Continuity criterion of monotone functions (Theorem 5.6.3).
\Box Continuous inverse theorem.
Differentiation.
\odot Derivative of a function at a point. Function, differentiable at a point.
☐ Continuity of a differentiable function.
\triangleright Function, continuous but not differentiable at $x = 0$.
\triangleright Function, differentiable on \mathbb{R} , whose derivative is not continuous at 0.
☐ Arithmetic properties of derivative.
☐ Chain rule.
$\hfill\Box$ Derivative of inverse function (inverse function theorem).
\Box Interior extremum theorem.
\square Rolle's theorem.
\square Mean value theorem.
\square First derivative test for extrema (Theorem 6.2.8).
\square Criterion for a differentiable function to be increasing/decreasing/constant on an interval (Theorems 6.2.5, 6.2.7).
\odot <i>n</i> th Taylor polynomial of a function.
\square Taylor's theorem.
\square nth derivative test for extrema (Theorem 6.4.4).
\square nth Taylor's polynomial at zero for $(1+x)^{\alpha}$, e^{x} , $\ln x$, $\sin x$, $\cos x$.
The Riemann Integral.
\odot Partition, tagged partition, Riemann sum.
\odot Riemann integrable function, Riemann integral.
\rhd Bounded but not a Riemann integrable function.
$\hfill\Box$ Arithmetic and order properties of Riemann integral (linearity and monotonicity).
$\hfill\square$ Boundedness theorem for Riemann integrable function.
$\hfill\square$ Riemann integrability of a continuous function, monotone function (proof not required).
☐ Interval additivity theorem (proof not required).
$\hfill\Box$ The fundamental theorem of calculus (first form).
⊙ Indefinite integral, antiderivative.
$\hfill\Box$ The fundamental theorem of calculus (second form).
$\hfill\Box$ Derivative of an indefinite integral of a continuous function.